A fourth-order Magnus scheme for Helmholtz equation
نویسندگان
چکیده
منابع مشابه
A Fourth Order Magnus Scheme for Helmholtz Equation
For wave propagation in a slowly varying waveguide, it is necessary to solve the Helmholtz equation in a domain that is much larger than the typical wavelength. Standard finite difference and finite element methods must resolve the small oscillatory behavior of the wave field and are prohibitively expensive for practical applications. A popular method is to approximate the waveguide by segments...
متن کاملA Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates
In many problems, one wishes to solve the Helmholtz equation in cylindrical or spherical coordinates which introduces variable coefficients within the differentiated terms. Fourth order accurate methods are desirable to reduce pollution and dispersion errors and so alleviate the points-per-wavelength constraint. However, the variable coefficients renders existing fourth order finite difference ...
متن کاملA Fourth Order Derivative-Free Operator Marching Method for Helmholtz Equation in Waveguides
A fourth order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth order exponential integrator for linear evolution equations. The method improves the second order accuracy associated with the widely used step-wise coupled mode method where the waveguide is approximated by segments that are uniform in the propagation di...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملA fourth-order finite difference scheme for the numerical solution of 1D linear hyperbolic equation
In this paper, a high-order and unconditionally stable difference method is proposed for the numerical solution of onespace dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivative of this equation and a Padé approximation of fifth-order for the resulting system of ordinary differential equations. It is shown ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2005
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.03.010